Fundamentals of Building Autonomous LLM Agents (2510.09244v1)
Abstract: This paper reviews the architecture and implementation methods of agents powered by LLMs. Motivated by the limitations of traditional LLMs in real-world tasks, the research aims to explore patterns to develop "agentic" LLMs that can automate complex tasks and bridge the performance gap with human capabilities. Key components include a perception system that converts environmental percepts into meaningful representations; a reasoning system that formulates plans, adapts to feedback, and evaluates actions through different techniques like Chain-of-Thought and Tree-of-Thought; a memory system that retains knowledge through both short-term and long-term mechanisms; and an execution system that translates internal decisions into concrete actions. This paper shows how integrating these systems leads to more capable and generalized software bots that mimic human cognitive processes for autonomous and intelligent behavior.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.