Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Distributionally robust approximation property of neural networks (2510.09177v1)

Published 10 Oct 2025 in stat.ML, cs.LG, math.FA, and math.PR

Abstract: The universal approximation property uniformly with respect to weakly compact families of measures is established for several classes of neural networks. To that end, we prove that these neural networks are dense in Orlicz spaces, thereby extending classical universal approximation theorems even beyond the traditional $Lp$-setting. The covered classes of neural networks include widely used architectures like feedforward neural networks with non-polynomial activation functions, deep narrow networks with ReLU activation functions and functional input neural networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 26 likes.

Upgrade to Pro to view all of the tweets about this paper: