2000 character limit reached
Robustness and Regularization in Hierarchical Re-Basin (2510.09174v1)
Published 10 Oct 2025 in cs.LG
Abstract: This paper takes a closer look at Git Re-Basin, an interesting new approach to merge trained models. We propose a hierarchical model merging scheme that significantly outperforms the standard MergeMany algorithm. With our new algorithm, we find that Re-Basin induces adversarial and perturbation robustness into the merged models, with the effect becoming stronger the more models participate in the hierarchical merging scheme. However, in our experiments Re-Basin induces a much bigger performance drop than reported by the original authors.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.