Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Hierarchical Semantic RL: Tackling the Problem of Dynamic Action Space for RL-based Recommendations (2510.09167v1)

Published 10 Oct 2025 in cs.IR

Abstract: Recommender Systems (RS) are fundamental to modern online services. While most existing approaches optimize for short-term engagement, recent work has begun to explore reinforcement learning (RL) to model long-term user value. However, these efforts face significant challenges due to the vast, dynamic action spaces inherent in recommendation, which hinder stable policy learning. To resolve this bottleneck, we introduce Hierarchical Semantic RL (HSRL), which reframes RL-based recommendation over a fixed Semantic Action Space (SAS). HSRL encodes items as Semantic IDs (SIDs) for policy learning, and maps SIDs back to their original items via a fixed, invertible lookup during execution. To align decision-making with SID generation, the Hierarchical Policy Network (HPN) operates in a coarse-to-fine manner, employing hierarchical residual state modeling to refine each level's context from the previous level's residual, thereby stabilizing training and reducing representation-decision mismatch. In parallel, a Multi-level Critic (MLC) provides token-level value estimates, enabling fine-grained credit assignment. Across public benchmarks and a large-scale production dataset from a leading Chinese short-video advertising platform, HSRL consistently surpasses state-of-the-art baselines. In online deployment over a seven-day A/B testing, it delivers an 18.421% CVR lift with only a 1.251% increase in cost, supporting HSRL as a scalable paradigm for RL-based recommendation. Our code is released at https://github.com/MinmaoWang/HSRL.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: