Papers
Topics
Authors
Recent
2000 character limit reached

Score-Based Density Estimation from Pairwise Comparisons (2510.09146v1)

Published 10 Oct 2025 in cs.LG

Abstract: We study density estimation from pairwise comparisons, motivated by expert knowledge elicitation and learning from human feedback. We relate the unobserved target density to a tempered winner density (marginal density of preferred choices), learning the winner's score via score-matching. This allows estimating the target by `de-tempering' the estimated winner density's score. We prove that the score vectors of the belief and the winner density are collinear, linked by a position-dependent tempering field. We give analytical formulas for this field and propose an estimator for it under the Bradley-Terry model. Using a diffusion model trained on tempered samples generated via score-scaled annealed Langevin dynamics, we can learn complex multivariate belief densities of simulated experts, from only hundreds to thousands of pairwise comparisons.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.