Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Training Feature Attribution for Vision Models (2510.09135v1)

Published 10 Oct 2025 in cs.CV and cs.LG

Abstract: Deep neural networks are often considered opaque systems, prompting the need for explainability methods to improve trust and accountability. Existing approaches typically attribute test-time predictions either to input features (e.g., pixels in an image) or to influential training examples. We argue that both perspectives should be studied jointly. This work explores training feature attribution, which links test predictions to specific regions of specific training images and thereby provides new insights into the inner workings of deep models. Our experiments on vision datasets show that training feature attribution yields fine-grained, test-specific explanations: it identifies harmful examples that drive misclassifications and reveals spurious correlations, such as patch-based shortcuts, that conventional attribution methods fail to expose.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.