Papers
Topics
Authors
Recent
2000 character limit reached

A Semantic Framework for Patient Digital Twins in Chronic Care (2510.09134v1)

Published 10 Oct 2025 in cs.SE and cs.ET

Abstract: Personalized chronic care requires the integration of multimodal health data to enable precise, adaptive, and preventive decision-making. Yet most current digital twin (DT) applications remain organ-specific or tied to isolated data types, lacking a unified and privacy-preserving foundation. This paper introduces the Patient Medical Digital Twin (PMDT), an ontology-driven in silico patient framework that integrates physiological, psychosocial, behavioral, and genomic information into a coherent, extensible model. Implemented in OWL 2.0, the PMDT ensures semantic interoperability, supports automated reasoning, and enables reuse across diverse clinical contexts. Its ontology is structured around modular Blueprints (patient, disease and diagnosis, treatment and follow-up, trajectories, safety, pathways, and adverse events), formalized through dedicated conceptual views. These were iteratively refined and validated through expert workshops, questionnaires, and a pilot study in the EU H2020 QUALITOP project with real-world immunotherapy patients. Evaluation confirmed ontology coverage, reasoning correctness, usability, and GDPR compliance. Results demonstrate the PMDT's ability to unify heterogeneous data, operationalize competency questions, and support descriptive, predictive, and prescriptive analytics in a federated, privacy-preserving manner. By bridging gaps in data fragmentation and semantic standardization, the PMDT provides a validated foundation for next-generation digital health ecosystems, transforming chronic care toward proactive, continuously optimized, and equitable management.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.