Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 40 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Polar Separable Transform for Efficient Orthogonal Rotation-Invariant Image Representation (2510.09125v1)

Published 10 Oct 2025 in cs.CV

Abstract: Orthogonal moment-based image representations are fundamental in computer vision, but classical methods suffer from high computational complexity and numerical instability at large orders. Zernike and pseudo-Zernike moments, for instance, require coupled radial-angular processing that precludes efficient factorization, resulting in $\mathcal{O}(n3N2)$ to $\mathcal{O}(n6N2)$ complexity and $\mathcal{O}(N4)$ condition number scaling for the $n$th-order moments on an $N\times N$ image. We introduce \textbf{PSepT} (Polar Separable Transform), a separable orthogonal transform that overcomes the non-separability barrier in polar coordinates. PSepT achieves complete kernel factorization via tensor-product construction of Discrete Cosine Transform (DCT) radial bases and Fourier harmonic angular bases, enabling independent radial and angular processing. This separable design reduces computational complexity to $\mathcal{O}(N2 \log N)$, memory requirements to $\mathcal{O}(N2)$, and condition number scaling to $\mathcal{O}(\sqrt{N})$, representing exponential improvements over polynomial approaches. PSepT exhibits orthogonality, completeness, energy conservation, and rotation-covariance properties. Experimental results demonstrate better numerical stability, computational efficiency, and competitive classification performance on structured datasets, while preserving exact reconstruction. The separable framework enables high-order moment analysis previously infeasible with classical methods, opening new possibilities for robust image analysis applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.