Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

When Retrieval Succeeds and Fails: Rethinking Retrieval-Augmented Generation for LLMs (2510.09106v1)

Published 10 Oct 2025 in cs.CL

Abstract: LLMs have enabled a wide range of applications through their powerful capabilities in language understanding and generation. However, as LLMs are trained on static corpora, they face difficulties in addressing rapidly evolving information or domain-specific queries. Retrieval-Augmented Generation (RAG) was developed to overcome this limitation by integrating LLMs with external retrieval mechanisms, allowing them to access up-to-date and contextually relevant knowledge. However, as LLMs themselves continue to advance in scale and capability, the relative advantages of traditional RAG frameworks have become less pronounced and necessary. Here, we present a comprehensive review of RAG, beginning with its overarching objectives and core components. We then analyze the key challenges within RAG, highlighting critical weakness that may limit its effectiveness. Finally, we showcase applications where LLMs alone perform inadequately, but where RAG, when combined with LLMs, can substantially enhance their effectiveness. We hope this work will encourage researchers to reconsider the role of RAG and inspire the development of next-generation RAG systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 7 likes.

Upgrade to Pro to view all of the tweets about this paper: