LitE-SQL: A Lightweight and Efficient Text-to-SQL Framework with Vector-based Schema Linking and Execution-Guided Self-Correction (2510.09014v1)
Abstract: The Text-to-SQL task translates natural language questions into SQL queries, enabling intuitive database interaction for non-experts. While recent methods leveraging LLMs achieve strong performance, their reliance on proprietary models raise concerns about deployment feasibility and data privacy. In this work, we introduce LitE-SQL, a Lightweight and Efficient framework with two components: (i) a Schema Retriever that performs efficient schema linking using a vector database of pre-computed schema embeddings, and (ii) a SQL Generator fine-tuned in two stages-supervised fine-tuning followed by execution-guided reinforcement-enabling self-correction without costly multi-candidate generation. On BIRD, LitE-SQL achieves 72.10% execution accuracy, and on Spider 1.0 it reaches 88.45%, demonstrating comparable or superior performance to LLM-based methods despite using 2x to 30x fewer parameters. Our findings demonstrate that high-quality Text-to-SQL generation is feasible with lightweight models, offering a practical solution for privacy-sensitive and resource-constrained settings.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.