mmJoints: Expanding Joint Representations Beyond (x,y,z) in mmWave-Based 3D Pose Estimation (2510.08970v1)
Abstract: In mmWave-based pose estimation, sparse signals and weak reflections often cause models to infer body joints from statistical priors rather than sensor data. While prior knowledge helps in learning meaningful representations, over-reliance on it degrades performance in downstream tasks like gesture and activity recognition. In this paper, we introduce mmJoints, a framework that augments a pre-trained, black-box mmWave-based 3D pose estimator's output with additional joint descriptors. Rather than mitigating bias, mmJoints makes it explicit by estimating the likelihood of a joint being sensed and the reliability of its predicted location. These descriptors enhance interpretability and improve downstream task accuracy. Through extensive evaluations using over 115,000 signal frames across 13 pose estimation settings, we show that mmJoints estimates descriptors with an error rate below 4.2%. mmJoints also improves joint position accuracy by up to 12.5% and boosts activity recognition by up to 16% over state-of-the-art methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.