Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Denoised Diffusion for Object-Focused Image Augmentation (2510.08955v1)

Published 10 Oct 2025 in cs.CV and cs.LG

Abstract: Modern agricultural operations increasingly rely on integrated monitoring systems that combine multiple data sources for farm optimization. Aerial drone-based animal health monitoring serves as a key component but faces limited data availability, compounded by scene-specific issues such as small, occluded, or partially visible animals. Transfer learning approaches often fail to address this limitation due to the unavailability of large datasets that reflect specific farm conditions, including variations in animal breeds, environments, and behaviors. Therefore, there is a need for developing a problem-specific, animal-focused data augmentation strategy tailored to these unique challenges. To address this gap, we propose an object-focused data augmentation framework designed explicitly for animal health monitoring in constrained data settings. Our approach segments animals from backgrounds and augments them through transformations and diffusion-based synthesis to create realistic, diverse scenes that enhance animal detection and monitoring performance. Our initial experiments demonstrate that our augmented dataset yields superior performance compared to our baseline models on the animal detection task. By generating domain-specific data, our method empowers real-time animal health monitoring solutions even in data-scarce scenarios, bridging the gap between limited data and practical applicability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: