Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 149 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Bi-level Meta-Policy Control for Dynamic Uncertainty Calibration in Evidential Deep Learning (2510.08938v1)

Published 10 Oct 2025 in cs.LG and cs.CV

Abstract: Traditional Evidence Deep Learning (EDL) methods rely on static hyperparameter for uncertainty calibration, limiting their adaptability in dynamic data distributions, which results in poor calibration and generalization in high-risk decision-making tasks. To address this limitation, we propose the Meta-Policy Controller (MPC), a dynamic meta-learning framework that adjusts the KL divergence coefficient and Dirichlet prior strengths for optimal uncertainty modeling. Specifically, MPC employs a bi-level optimization approach: in the inner loop, model parameters are updated through a dynamically configured loss function that adapts to the current training state; in the outer loop, a policy network optimizes the KL divergence coefficient and class-specific Dirichlet prior strengths based on multi-objective rewards balancing prediction accuracy and uncertainty quality. Unlike previous methods with fixed priors, our learnable Dirichlet prior enables flexible adaptation to class distributions and training dynamics. Extensive experimental results show that MPC significantly enhances the reliability and calibration of model predictions across various tasks, improving uncertainty calibration, prediction accuracy, and performance retention after confidence-based sample rejection.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.