Defense against Unauthorized Distillation in Image Restoration via Feature Space Perturbation (2510.08925v1)
Abstract: Knowledge distillation (KD) attacks pose a significant threat to deep model intellectual property by enabling adversaries to train student networks using a teacher model's outputs. While recent defenses in image classification have successfully disrupted KD by perturbing output probabilities, extending these methods to image restoration is difficult. Unlike classification, restoration is a generative task with continuous, high-dimensional outputs that depend on spatial coherence and fine details. Minor perturbations are often insufficient, as students can still learn the underlying mapping.To address this, we propose Adaptive Singular Value Perturbation (ASVP), a runtime defense tailored for image restoration models. ASVP operates on internal feature maps of the teacher using singular value decomposition (SVD). It amplifies the topk singular values to inject structured, high-frequency perturbations, disrupting the alignment needed for distillation. This hinders student learning while preserving the teacher's output quality.We evaluate ASVP across five image restoration tasks: super-resolution, low-light enhancement, underwater enhancement, dehazing, and deraining. Experiments show ASVP reduces student PSNR by up to 4 dB and SSIM by 60-75%, with negligible impact on the teacher's performance. Compared to prior methods, ASVP offers a stronger and more consistent defense.Our approach provides a practical solution to protect open-source restoration models from unauthorized knowledge distillation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.