Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Quality Estimation Reranking for Document-Level Translation (2510.08870v1)

Published 10 Oct 2025 in cs.CL

Abstract: Quality estimation (QE) reranking is a form of quality-aware decoding which aims to improve machine translation (MT) by scoring and selecting the best candidate from a pool of generated translations. While known to be effective at the sentence level, its application to the increasingly prominent domain of document-level translation remains underexplored. In this work, we evaluate QE reranking performance on document-level (rather than the typical sentence-level) translation, using various learned and LLM-based QE metrics. We find that with our best learned metric, SLIDE, BLEURT-20 scores improve by +2.00 with only two candidates, and by +5.09 with 32, across both decoder-only LLM models and encoder-decoder neural machine translation (NMT) models. Using the best LLM-based metric, GEMBA-DA, gains of +1.63 and +4.30 are achieved under the same conditions. Although gains shrink with longer inputs, reranking with 32 candidates yields improvements of +2.34 (SLIDE) and +1.40 (GEMBA-DA) on our longest documents (512-1024 source tokens). These findings demonstrate the practical value of document-level QE, with minimal runtime overhead given suitable translation models and hardware.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.