Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Comparative Performance Analysis of Modern NoSQL Data Technologies: Redis, Aerospike, and Dragonfly (2510.08863v1)

Published 9 Oct 2025 in cs.DB and cs.DC

Abstract: The rise of distributed applications and cloud computing has created a demand for scalable, high-performance key-value storage systems. This paper presents a performance evaluation of three prominent NoSQL key-value stores: Redis, Aerospike, and Dragonfly, using the Yahoo! Cloud Serving Benchmark (YCSB) framework. We conducted extensive experiments across three distinct workload patterns (read-heavy, write-heavy), and balanced while systematically varying client concurrency from 1 to 32 clients. Our evaluation methodology captures both latency, throughput, and memory characteristics under realistic operational conditions, providing insights into the performance trade-offs and scalability behaviour of each system

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: