Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Smooth Uncertainty Sets: Dependence of Uncertain Parameters via a Simple Polyhedral Set (2510.08843v1)

Published 9 Oct 2025 in math.OC and cs.CE

Abstract: We propose a novel polyhedral uncertainty set for robust optimization, termed the smooth uncertainty set, which captures dependencies of uncertain parameters by constraining their pairwise differences. The bounds on these differences may be dictated by the underlying physics of the problem and may be expressed by domain experts. When correlations are available, the bounds can be set to ensure that the associated probabilistic constraints are satisfied for any given probability. We explore specialized solution methods for the resulting optimization problems, including compact reformulations that exploit special structures when they appear, a column generation algorithm, and a reformulation of the adversarial problem as a minimum-cost flow problem. Our numerical experiments, based on problems from literature, illustrate (i) that the performance of the smooth uncertainty set model solution is similar to that of the ellipsoidal uncertainty model solution, albeit, it is computed within significantly shorter running times, and (ii) our column-generation algorithm can outperform the classical cutting plane algorithm and dualized reformulation, respectively in terms of solution time and memory consumption.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube