COMPASS: Enhancing Agent Long-Horizon Reasoning with Evolving Context (2510.08790v1)
Abstract: Long-horizon tasks that require sustained reasoning and multiple tool interactions remain challenging for LLM agents: small errors compound across steps, and even state-of-the-art models often hallucinate or lose coherence. We identify context management as the central bottleneck -- extended histories cause agents to overlook critical evidence or become distracted by irrelevant information, thus failing to replan or reflect from previous mistakes. To address this, we propose COMPASS (Context-Organized Multi-Agent Planning and Strategy System), a lightweight hierarchical framework that separates tactical execution, strategic oversight, and context organization into three specialized components: (1) a Main Agent that performs reasoning and tool use, (2) a Meta-Thinker that monitors progress and issues strategic interventions, and (3) a Context Manager that maintains concise, relevant progress briefs for different reasoning stages. Across three challenging benchmarks -- GAIA, BrowseComp, and Humanity's Last Exam -- COMPASS improves accuracy by up to 20% relative to both single- and multi-agent baselines. We further introduce a test-time scaling extension that elevates performance to match established DeepResearch agents, and a post-training pipeline that delegates context management to smaller models for enhanced efficiency.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.