Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Struc-EMB: The Potential of Structure-Aware Encoding in Language Embeddings (2510.08774v1)

Published 9 Oct 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Text embeddings from LLMs have become foundational for numerous applications. However, these models typically operate on raw text, overlooking the rich structural information, such as hyperlinks or citations, that provides crucial context in many real-world datasets. This paper introduces and systematically evaluates a new paradigm for generating structure-aware text embeddings by integrating these structural relations directly into the LLM's internal encoding process, rather than relying on traditional post-hoc aggregation. We investigate two primary in-process methods: sequential concatenation and parallel caching. Through extensive zero-shot experiments across retrieval, clustering, classification, and recommendation tasks, we demonstrate that our structure-aware approaches consistently outperform both text-only and post-hoc baselines. Our analysis reveals critical trade-offs: sequential concatenation excels with noisy, moderate-length contexts, while parallel caching scales more effectively to long, high-signal contexts but is more susceptible to distractors. To address the challenge of noisy structural data, we also introduce and validate two effective techniques: Context Distillation and Semantic Balancing. This work provides the first comprehensive analysis of in-process structure-aware encoding, offering a blueprint for building more powerful and contextually aware embedding models.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: