Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 411 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Graph Diffusion Transformers are In-Context Molecular Designers (2510.08744v1)

Published 9 Oct 2025 in cs.LG and cs.AI

Abstract: In-context learning allows large models to adapt to new tasks from a few demonstrations, but it has shown limited success in molecular design. Existing databases such as ChEMBL contain molecular properties spanning millions of biological assays, yet labeled data for each property remain scarce. To address this limitation, we introduce demonstration-conditioned diffusion models (DemoDiff), which define task contexts using a small set of molecule-score examples instead of text descriptions. These demonstrations guide a denoising Transformer to generate molecules aligned with target properties. For scalable pretraining, we develop a new molecular tokenizer with Node Pair Encoding that represents molecules at the motif level, requiring 5.5$\times$ fewer nodes. We curate a dataset containing millions of context tasks from multiple sources covering both drugs and materials, and pretrain a 0.7-billion-parameter model on it. Across 33 design tasks in six categories, DemoDiff matches or surpasses LLMs 100-1000$\times$ larger and achieves an average rank of 3.63 compared to 5.25-10.20 for domain-specific approaches. These results position DemoDiff as a molecular foundation model for in-context molecular design. Our code is available at https://github.com/liugangcode/DemoDiff.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 9 likes.

Upgrade to Pro to view all of the tweets about this paper: