Graph Diffusion Transformers are In-Context Molecular Designers (2510.08744v1)
Abstract: In-context learning allows large models to adapt to new tasks from a few demonstrations, but it has shown limited success in molecular design. Existing databases such as ChEMBL contain molecular properties spanning millions of biological assays, yet labeled data for each property remain scarce. To address this limitation, we introduce demonstration-conditioned diffusion models (DemoDiff), which define task contexts using a small set of molecule-score examples instead of text descriptions. These demonstrations guide a denoising Transformer to generate molecules aligned with target properties. For scalable pretraining, we develop a new molecular tokenizer with Node Pair Encoding that represents molecules at the motif level, requiring 5.5$\times$ fewer nodes. We curate a dataset containing millions of context tasks from multiple sources covering both drugs and materials, and pretrain a 0.7-billion-parameter model on it. Across 33 design tasks in six categories, DemoDiff matches or surpasses LLMs 100-1000$\times$ larger and achieves an average rank of 3.63 compared to 5.25-10.20 for domain-specific approaches. These results position DemoDiff as a molecular foundation model for in-context molecular design. Our code is available at https://github.com/liugangcode/DemoDiff.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.