Coordinates from Context: Using LLMs to Ground Complex Location References (2510.08741v1)
Abstract: Geocoding is the task of linking a location reference to an actual geographic location and is essential for many downstream analyses of unstructured text. In this paper, we explore the challenging setting of geocoding compositional location references. Building on recent work demonstrating LLMs' abilities to reason over geospatial data, we evaluate LLMs' geospatial knowledge versus reasoning skills relevant to our task. Based on these insights, we propose an LLM-based strategy for geocoding compositional location references. We show that our approach improves performance for the task and that a relatively small fine-tuned LLM can achieve comparable performance with much larger off-the-shelf models.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.