Papers
Topics
Authors
Recent
2000 character limit reached

Scaling Laws for Code: A More Data-Hungry Regime (2510.08702v1)

Published 9 Oct 2025 in cs.CL

Abstract: Code LLMs are revolutionizing software engineering. However, scaling laws that guide the efficient training are predominantly analyzed on Natural Language (NL). Given the fundamental differences like strict syntax between code and NL, it is unclear whether these laws are directly applicable to code. To address this gap, we conduct the first large-scale empirical study of scaling laws for code, comprising 117 experimental runs with model sizes from 0.2B to 3.8B and training tokens from 2B to 128B. We fit the Chinchilla law and the Farsser law. First, the results show that the more expressive Farseer law offers greater accuracy. Second, the analysis reveals that Code LLMs scale effectively with model size. Crucially, code represents a more data-hungry regime, requiring a substantially higher data-to-parameter ratio than NL. Finally, two additional sets of experiments on code-NL mixtures show that NL benefits resource-constrained scenarios, but becomes a detriment at higher compute budgets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.