Do LLMs Know They Are Being Tested? Evaluation Awareness and Incentive-Sensitive Failures in GPT-OSS-20B (2510.08624v1)
Abstract: Benchmarks for LLMs often rely on rubric-scented prompts that request visible reasoning and strict formatting, whereas real deployments demand terse, contract-bound answers. We investigate whether such "evaluation scent" inflates measured performance without commensurate capability gains. Using a single open-weights model (GPT-OSS-20B), we run six paired A/B scenarios that hold task content and decoding fixed while varying framing (evaluation-oriented vs. real-world) and reasoning depth (Medium/High): deterministic math, strict code-fix, citation generation, incentive flips (caution vs. competence), CoT visibility, and multilingual (Urdu) headers. Deterministic validators compute accuracy, answer-only compliance, hedging/refusals, chain-of-thought (CoT) length, and schema compliance, with pre-registered deltas and composite indices. Across scenarios, evaluation framing reliably inflates CoT (hundreds to >1000 characters) and reduces answer-only compliance, with limited or inconsistent accuracy gains. In structured outputs, it improves wrappers (e.g., fenced blocks, enumerated lists) but not regex-validated substance. Incentive wording reweights error composition: praising caution modestly improves accuracy at high reasoning and reduces wrong-but-confident errors, whereas praising competence yields terser but riskier outputs. Urdu rubric headers reproduce these signatures and can decrease accuracy at higher reasoning depth, indicating multilingual parity risks. We provide a reproducible A/B framework (prompt banks, validators, per-run scores, scripts; versioned DOI) and practical guidance: neutral phrasing or dual-framing checks, contract-aware grading, style-delta reporting, confidence governance, and multilingual dashboards to ensure that benchmark gains reflect deployable capability.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.