Hypothesis Hunting with Evolving Networks of Autonomous Scientific Agents (2510.08619v1)
Abstract: Large-scale scientific datasets -- spanning health biobanks, cell atlases, Earth reanalyses, and more -- create opportunities for exploratory discovery unconstrained by specific research questions. We term this process hypothesis hunting: the cumulative search for insight through sustained exploration across vast and complex hypothesis spaces. To support it, we introduce AScience, a framework modeling discovery as the interaction of agents, networks, and evaluation norms, and implement it as ASCollab, a distributed system of LLM-based research agents with heterogeneous behaviors. These agents self-organize into evolving networks, continually producing and peer-reviewing findings under shared standards of evaluation. Experiments show that such social dynamics enable the accumulation of expert-rated results along the diversity-quality-novelty frontier, including rediscoveries of established biomarkers, extensions of known pathways, and proposals of new therapeutic targets. While wet-lab validation remains indispensable, our experiments on cancer cohorts demonstrate that socially structured, agentic networks can sustain exploratory hypothesis hunting at scale.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.