Papers
Topics
Authors
Recent
2000 character limit reached

Recover-LoRA: Data-Free Accuracy Recovery of Degraded Language Models via Low-Rank Adaptation (2510.08600v1)

Published 6 Oct 2025 in cs.CL, cs.AI, and cs.LG

Abstract: Inference optimizations such as quantization, pruning, format and datatype conversion, model export, and serialization can lead to functional degradations in LLM task performance. While most efforts on performance recovery for deployment focus on robust quantization techniques, we focus on recovering model accuracies from any sources that degrade model weights, such as improper model serialization. In this work, we propose Recover-LoRA, a lightweight and dataset agnostic method to recover accuracy in degraded models. Recover-LoRA uses synthetic data and logit distillation to learn LoRA adapters on selective layers that facilitate aligning the degraded model to its full precision model. We investigate the utility of Recover-LoRA across a diverse set of small LLMs (SLMs), including models with varying attention architectures, multi-head attention (MHA) and group-query attention (GQA), as well as several evaluation datasets. Our results show that Recover-LoRA recovers model accuracies by 5-17% on MHA and GQA SLMs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.