Recover-LoRA: Data-Free Accuracy Recovery of Degraded Language Models via Low-Rank Adaptation (2510.08600v1)
Abstract: Inference optimizations such as quantization, pruning, format and datatype conversion, model export, and serialization can lead to functional degradations in LLM task performance. While most efforts on performance recovery for deployment focus on robust quantization techniques, we focus on recovering model accuracies from any sources that degrade model weights, such as improper model serialization. In this work, we propose Recover-LoRA, a lightweight and dataset agnostic method to recover accuracy in degraded models. Recover-LoRA uses synthetic data and logit distillation to learn LoRA adapters on selective layers that facilitate aligning the degraded model to its full precision model. We investigate the utility of Recover-LoRA across a diverse set of small LLMs (SLMs), including models with varying attention architectures, multi-head attention (MHA) and group-query attention (GQA), as well as several evaluation datasets. Our results show that Recover-LoRA recovers model accuracies by 5-17% on MHA and GQA SLMs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.