Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SPAD: Specialized Prefill and Decode Hardware for Disaggregated LLM Inference (2510.08544v1)

Published 9 Oct 2025 in cs.AR, cs.DC, and cs.LG

Abstract: LLMs have gained popularity in recent years, driving up the demand for inference. LLM inference is composed of two phases with distinct characteristics: a compute-bound prefill phase followed by a memory-bound decode phase. To efficiently serve LLMs, prior work proposes prefill-decode disaggregation to run each phase on separate hardware. However, existing hardware poorly matches the different requirements of each phase. Current datacenter GPUs and TPUs follow a more-is-better design philosophy that maximizes compute and memory resources, causing memory bandwidth underutilization in the prefill phase and compute underutilization in the decode phase. Such underutilization directly translates into increased serving costs. This paper proposes SPAD (Specialized Prefill and Decode hardware), adopting a less-is-more methodology to design specialized chips tailored to the distinct characteristics of prefill and decode phases. The proposed Prefill Chips have larger systolic arrays and use cost-effective GDDR memory, whereas the proposed Decode Chips retain high memory bandwidth but reduce compute capacity. Compared to modeled H100s, simulations show that the proposed Prefill Chips deliver 8% higher prefill performance on average at 52% lower hardware cost, while the proposed Decode Chips achieve 97% of the decode performance with 28% lower TDP. End-to-end simulations on production traces show that SPAD reduces hardware cost by 19%-41% and TDP by 2%-17% compared to modeled baseline clusters while offering the same performance. Even when models and workloads change, SPAD can reallocate either type of chip to run either phase and still achieve 11%-43% lower hardware costs, demonstrating the longevity of the SPAD design.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.