Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal Stopping in Latent Diffusion Models

Published 9 Oct 2025 in stat.ML and cs.LG | (2510.08409v1)

Abstract: We identify and analyze a surprising phenomenon of Latent Diffusion Models (LDMs) where the final steps of the diffusion can degrade sample quality. In contrast to conventional arguments that justify early stopping for numerical stability, this phenomenon is intrinsic to the dimensionality reduction in LDMs. We provide a principled explanation by analyzing the interaction between latent dimension and stopping time. Under a Gaussian framework with linear autoencoders, we characterize the conditions under which early stopping is needed to minimize the distance between generated and target distributions. More precisely, we show that lower-dimensional representations benefit from earlier termination, whereas higher-dimensional latent spaces require later stopping time. We further establish that the latent dimension interplays with other hyperparameters of the problem such as constraints in the parameters of score matching. Experiments on synthetic and real datasets illustrate these properties, underlining that early stopping can improve generative quality. Together, our results offer a theoretical foundation for understanding how the latent dimension influences the sample quality, and highlight stopping time as a key hyperparameter in LDMs.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.