Papers
Topics
Authors
Recent
2000 character limit reached

Robust Source-Free Domain Adaptation for Medical Image Segmentation based on Curriculum Learning (2510.08393v1)

Published 9 Oct 2025 in cs.CV

Abstract: Recent studies have uncovered a new research line, namely source-free domain adaptation, which adapts a model to target domains without using the source data. Such a setting can address the concerns on data privacy and security issues of medical images. However, current source-free domain adaptation frameworks mainly focus on the pseudo label refinement for target data without the consideration of learning procedure. Indeed, a progressive learning process from source to target domain will benefit the knowledge transfer during model adaptation. To this end, we propose a curriculum-based framework, namely learning from curriculum (LFC), for source-free domain adaptation, which consists of easy-to-hard and source-to-target curricula. Concretely, the former curriculum enables the framework to start learning with `easy' samples and gradually tune the optimization direction of model adaption by increasing the sample difficulty. While, the latter can stablize the adaptation process, which ensures smooth transfer of the model from the source domain to the target. We evaluate the proposed source-free domain adaptation approach on the public cross-domain datasets for fundus segmentation and polyp segmentation. The extensive experimental results show that our framework surpasses the existing approaches and achieves a new state-of-the-art.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.