Papers
Topics
Authors
Recent
2000 character limit reached

Detecting Legend Items on Historical Maps Using GPT-4o with In-Context Learning (2510.08385v1)

Published 9 Oct 2025 in cs.CV, cs.AI, cs.DB, and cs.IR

Abstract: Historical map legends are critical for interpreting cartographic symbols. However, their inconsistent layouts and unstructured formats make automatic extraction challenging. Prior work focuses primarily on segmentation or general optical character recognition (OCR), with few methods effectively matching legend symbols to their corresponding descriptions in a structured manner. We present a method that combines LayoutLMv3 for layout detection with GPT-4o using in-context learning to detect and link legend items and their descriptions via bounding box predictions. Our experiments show that GPT-4 with structured JSON prompts outperforms the baseline, achieving 88% F-1 and 85% IoU, and reveal how prompt design, example counts, and layout alignment affect performance. This approach supports scalable, layout-aware legend parsing and improves the indexing and searchability of historical maps across various visual styles.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.