Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Two-Stage Voting for Robust and Efficient Suicide Risk Detection on Social Media (2510.08365v1)

Published 9 Oct 2025 in cs.CL

Abstract: Suicide rates have risen worldwide in recent years, underscoring the urgent need for proactive prevention strategies. Social media provides valuable signals, as many at-risk individuals - who often avoid formal help due to stigma - choose instead to share their distress online. Yet detecting implicit suicidal ideation, conveyed indirectly through metaphor, sarcasm, or subtle emotional cues, remains highly challenging. Lightweight models like BERT handle explicit signals but fail on subtle implicit ones, while LLMs capture nuance at prohibitive computational cost. To address this gap, we propose a two-stage voting architecture that balances efficiency and robustness. In Stage 1, a lightweight BERT classifier rapidly resolves high-confidence explicit cases. In Stage 2, ambiguous inputs are escalated to either (i) a multi-perspective LLM voting framework to maximize recall on implicit ideation, or (ii) a feature-based ML ensemble guided by psychologically grounded indicators extracted via prompt-engineered LLMs for efficiency and interpretability. To the best of our knowledge, this is among the first works to operationalize LLM-extracted psychological features as structured vectors for suicide risk detection. On two complementary datasets - explicit-dominant Reddit and implicit-only DeepSuiMind - our framework outperforms single-model baselines, achieving 98.0% F1 on explicit cases, 99.7% on implicit ones, and reducing the cross-domain gap below 2%, while significantly lowering LLM cost.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.