Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

LTCA: Long-range Temporal Context Attention for Referring Video Object Segmentation (2510.08305v1)

Published 9 Oct 2025 in cs.CV

Abstract: Referring Video Segmentation (RVOS) aims to segment objects in videos given linguistic expressions. The key to solving RVOS is to extract long-range temporal context information from the interactions of expressions and videos to depict the dynamic attributes of each object. Previous works either adopt attention across all the frames or stack dense local attention to achieve a global view of temporal context. However, they fail to strike a good balance between locality and globality, and the computation complexity significantly increases with the increase of video length. In this paper, we propose an effective long-range temporal context attention (LTCA) mechanism to aggregate global context information into object features. Specifically, we aggregate the global context information from two aspects. Firstly, we stack sparse local attentions to balance the locality and globality. We design a dilated window attention across frames to aggregate local context information and perform such attention in a stack of layers to enable a global view. Further, we enable each query to attend to a small group of keys randomly selected from a global pool to enhance the globality. Secondly, we design a global query to interact with all the other queries to directly encode the global context information. Experiments show our method achieves new state-of-the-art on four referring video segmentation benchmarks. Notably, our method shows an improvement of 11.3% and 8.3% on the MeViS valu and val datasets respectively.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: