Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mix- and MoE-DPO: A Variational Inference Approach to Direct Preference Optimization (2510.08256v1)

Published 9 Oct 2025 in cs.LG, cs.AI, and cs.CL

Abstract: Direct Preference Optimization (DPO) has recently emerged as a simple and effective alternative to reinforcement learning from human feedback (RLHF) for aligning LLMs with user preferences. However, existing DPO formulations rely on a single monolithic model, which limits their expressivity in multi-task settings and their adaptability to heterogeneous or diverse preference distributions. In this work, we propose Mix- and MoE-DPO, a framework that extends DPO with both soft mixture models and mixture-of-experts (MoE) architectures, using a stochastic variational inference approach. Our method introduces a latent-variable model over expert assignments and optimizes a variational evidence lower bound (ELBO), enabling stable and efficient learning of specialized expert policies from preference data. Mix- and MoE-DPO provides three key advantages over standard DPO: (i) generalization via universal function approximation through mixtures; (ii) reward and policy specialization through expert components tailored to distinct preference modes; and (iii) contextual alignment through input-dependent soft gating that enables user-specific mixture policies. Our framework supports both shared base architectures with expert-specific policy heads and fully independent expert models, allowing flexible trade-offs between parameter efficiency and specialization. We validate our approach on a variety of model sizes and multi-preference datasets, demonstrating that Mix- and MoE-DPO offers a powerful and scalable method for preference-based LLM alignment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.