Papers
Topics
Authors
Recent
2000 character limit reached

On the Optimality of the Median-of-Means Estimator under Adversarial Contamination (2510.07867v1)

Published 9 Oct 2025 in stat.ML, cs.LG, math.ST, and stat.TH

Abstract: The Median-of-Means (MoM) is a robust estimator widely used in machine learning that is known to be (minimax) optimal in scenarios where samples are i.i.d. In more grave scenarios, samples are contaminated by an adversary that can inspect and modify the data. Previous work has theoretically shown the suitability of the MoM estimator in certain contaminated settings. However, the (minimax) optimality of MoM and its limitations under adversarial contamination remain unknown beyond the Gaussian case. In this paper, we present upper and lower bounds for the error of MoM under adversarial contamination for multiple classes of distributions. In particular, we show that MoM is (minimax) optimal in the class of distributions with finite variance, as well as in the class of distributions with infinite variance and finite absolute $(1+r)$-th moment. We also provide lower bounds for MoM's error that match the order of the presented upper bounds, and show that MoM is sub-optimal for light-tailed distributions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 12 likes about this paper.