Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An LLM-Powered Cooperative Framework for Large-Scale Multi-Vehicle Navigation (2510.07825v1)

Published 9 Oct 2025 in cs.AI

Abstract: The rise of Internet of Vehicles (IoV) technologies is transforming traffic management from isolated control to a collective, multi-vehicle process. At the heart of this shift is multi-vehicle dynamic navigation, which requires simultaneously routing large fleets under evolving traffic conditions. Existing path search algorithms and reinforcement learning methods struggle to scale to city-wide networks, often failing to capture the nonlinear, stochastic, and coupled dynamics of urban traffic. To address these challenges, we propose CityNav, a hierarchical, LLM-powered framework for large-scale multi-vehicle navigation. CityNav integrates a global traffic allocation agent, which coordinates strategic traffic flow distribution across regions, with local navigation agents that generate locally adaptive routes aligned with global directives. To enable effective cooperation, we introduce a cooperative reasoning optimization mechanism, in which agents are jointly trained with a dual-reward structure: individual rewards promote per-vehicle efficiency, while shared rewards encourage network-wide coordination and congestion reduction. Extensive experiments on four real-world road networks of varying scales (up to 1.6 million roads and 430,000 intersections) and traffic datasets demonstrate that CityNav consistently outperforms nine classical path search and RL-based baselines in city-scale travel efficiency and congestion mitigation. Our results highlight the potential of LLMs to enable scalable, adaptive, and cooperative city-wide traffic navigation, providing a foundation for intelligent, large-scale vehicle routing in complex urban environments. Our project is available at https://github.com/usail-hkust/CityNav.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com