Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

IntentionVLA: Generalizable and Efficient Embodied Intention Reasoning for Human-Robot Interaction (2510.07778v1)

Published 9 Oct 2025 in cs.RO, cs.AI, and cs.CV

Abstract: Vision-Language-Action (VLA) models leverage pretrained vision-LLMs (VLMs) to couple perception with robotic control, offering a promising path toward general-purpose embodied intelligence. However, current SOTA VLAs are primarily pretrained on multimodal tasks with limited relevance to embodied scenarios, and then finetuned to map explicit instructions to actions. Consequently, due to the lack of reasoning-intensive pretraining and reasoning-guided manipulation, these models are unable to perform implicit human intention reasoning required for complex, real-world interactions. To overcome these limitations, we propose \textbf{IntentionVLA}, a VLA framework with a curriculum training paradigm and an efficient inference mechanism. Our proposed method first leverages carefully designed reasoning data that combine intention inference, spatial grounding, and compact embodied reasoning, endowing the model with both reasoning and perception capabilities. In the following finetuning stage, IntentionVLA employs the compact reasoning outputs as contextual guidance for action generation, enabling fast inference under indirect instructions. Experimental results show that IntentionVLA substantially outperforms $\pi_0$, achieving 18\% higher success rates with direct instructions and 28\% higher than ECoT under intention instructions. On out-of-distribution intention tasks, IntentionVLA achieves over twice the success rate of all baselines, and further enables zero-shot human-robot interaction with 40\% success rate. These results highlight IntentionVLA as a promising paradigm for next-generation human-robot interaction (HRI) systems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 2 likes.