Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mutual Learning for Hashing: Unlocking Strong Hash Functions from Weak Supervision (2510.07703v1)

Published 9 Oct 2025 in cs.CV

Abstract: Deep hashing has been widely adopted for large-scale image retrieval, with numerous strategies proposed to optimize hash function learning. Pairwise-based methods are effective in learning hash functions that preserve local similarity relationships, whereas center-based methods typically achieve superior performance by more effectively capturing global data distributions. However, the strength of center-based methods in modeling global structures often comes at the expense of underutilizing important local similarity information. To address this limitation, we propose Mutual Learning for Hashing (MLH), a novel weak-to-strong framework that enhances a center-based hashing branch by transferring knowledge from a weaker pairwise-based branch. MLH consists of two branches: a strong center-based branch and a weaker pairwise-based branch. Through an iterative mutual learning process, the center-based branch leverages local similarity cues learned by the pairwise-based branch. Furthermore, inspired by the mixture-of-experts paradigm, we introduce a novel mixture-of-hash-experts module that enables effective cross-branch interaction, further enhancing the performance of both branches. Extensive experiments demonstrate that MLH consistently outperforms state-of-the-art hashing methods across multiple benchmark datasets.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.