Papers
Topics
Authors
Recent
2000 character limit reached

OBCache: Optimal Brain KV Cache Pruning for Efficient Long-Context LLM Inference (2510.07651v1)

Published 9 Oct 2025 in cs.CL and cs.AI

Abstract: LLMs with extended context windows enable powerful downstream applications but impose significant memory overhead, as caching all key-value (KV) states scales linearly with sequence length and batch size. Existing cache eviction methods address this by exploiting attention sparsity, yet they typically rank tokens heuristically using accumulated attention weights without considering their true impact on attention outputs. We propose Optimal Brain Cache (OBCache), a principled framework that formulates cache eviction as a layer-wise structured pruning problem. Building upon the Optimal Brain Damage (OBD) theory, OBCache quantifies token saliency by measuring the perturbation in attention outputs induced by pruning tokens, with closed-form scores derived for isolated keys, isolated values, and joint key-value pairs. Our scores account not only for attention weights but also for information from value states and attention outputs, thereby enhancing existing eviction strategies with output-aware signals. Experiments on LLaMA and Qwen models demonstrate that replacing the heuristic scores in existing works, which estimate token saliency across different query positions, with OBCache's output-aware scores consistently improves long-context accuracy.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.