Papers
Topics
Authors
Recent
2000 character limit reached

Transformer-Based Indirect Structural Health Monitoring of Rail Infrastructure with Attention-Driven Detection and Localization of Transient Defects (2510.07606v1)

Published 8 Oct 2025 in cs.LG and eess.SP

Abstract: Indirect structural health monitoring (iSHM) for broken rail detection using onboard sensors presents a cost-effective paradigm for railway track assessment, yet reliably detecting small, transient anomalies (2-10 cm) remains a significant challenge due to complex vehicle dynamics, signal noise, and the scarcity of labeled data limiting supervised approaches. This study addresses these issues through unsupervised deep learning. We introduce an incremental synthetic data benchmark designed to systematically evaluate model robustness against progressively complex challenges like speed variations, multi-channel inputs, and realistic noise patterns encountered in iSHM. Using this benchmark, we evaluate several established unsupervised models alongside our proposed Attention-Focused Transformer. Our model employs a self-attention mechanism, trained via reconstruction but innovatively deriving anomaly scores primarily from deviations in learned attention weights, aiming for both effectiveness and computational efficiency. Benchmarking results reveal that while transformer-based models generally outperform others, all tested models exhibit significant vulnerability to high-frequency localized noise, identifying this as a critical bottleneck for practical deployment. Notably, our proposed model achieves accuracy comparable to the state-of-the-art solution while demonstrating better inference speed. This highlights the crucial need for enhanced noise robustness in future iSHM models and positions our more efficient attention-based approach as a promising foundation for developing practical onboard anomaly detection systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.