Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

List Recoverable Codes: The Good, the Bad, and the Unknown (hopefully not Ugly) (2510.07597v1)

Published 8 Oct 2025 in cs.IT and math.IT

Abstract: List recovery is a fundamental task for error-correcting codes, vastly generalizing unique decoding from worst-case errors and list decoding. Briefly, one is given ''soft information'' in the form of input lists S_1,...,S_n of bounded size, and one argues that there are not too many codewords that agree a lot with this soft information. This general problem appears in many guises, both within coding theory and in theoretical computer science more broadly. In this article we survey recent results on list recovery codes, introducing both the ''good'' (i.e., possibility results, showing that codes with certain list recoverability exist), the ''bad'' (impossibility results), and the ''unknown''. We additionally demonstrate that, while list recoverable codes were initially introduced as a component in list decoding concatenated codes, they have since found myriad applications to and connections with other topics in theoretical computer science.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: