Papers
Topics
Authors
Recent
2000 character limit reached

Benchmarking is Broken -- Don't Let AI be its Own Judge (2510.07575v1)

Published 8 Oct 2025 in cs.AI and cs.LG

Abstract: The meteoric rise of AI, with its rapidly expanding market capitalization, presents both transformative opportunities and critical challenges. Chief among these is the urgent need for a new, unified paradigm for trustworthy evaluation, as current benchmarks increasingly reveal critical vulnerabilities. Issues like data contamination and selective reporting by model developers fuel hype, while inadequate data quality control can lead to biased evaluations that, even if unintentionally, may favor specific approaches. As a flood of participants enters the AI space, this "Wild West" of assessment makes distinguishing genuine progress from exaggerated claims exceptionally difficult. Such ambiguity blurs scientific signals and erodes public confidence, much as unchecked claims would destabilize financial markets reliant on credible oversight from agencies like Moody's. In high-stakes human examinations (e.g., SAT, GRE), substantial effort is devoted to ensuring fairness and credibility; why settle for less in evaluating AI, especially given its profound societal impact? This position paper argues that the current laissez-faire approach is unsustainable. We contend that true, sustainable AI advancement demands a paradigm shift: a unified, live, and quality-controlled benchmarking framework robust by construction, not by mere courtesy and goodwill. To this end, we dissect the systemic flaws undermining today's AI evaluation, distill the essential requirements for a new generation of assessments, and introduce PeerBench, a community-governed, proctored evaluation blueprint that embodies this paradigm through sealed execution, item banking with rolling renewal, and delayed transparency. Our goal is to pave the way for evaluations that can restore integrity and deliver genuinely trustworthy measures of AI progress.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 26 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com