Papers
Topics
Authors
Recent
2000 character limit reached

Investigating Thematic Patterns and User Preferences in LLM Interactions using BERTopic (2510.07557v1)

Published 8 Oct 2025 in cs.LG, cs.AI, cs.CY, and cs.HC

Abstract: This study applies BERTopic, a transformer-based topic modeling technique, to the lmsys-chat-1m dataset, a multilingual conversational corpus built from head-to-head evaluations of LLMs. Each user prompt is paired with two anonymized LLM responses and a human preference label, used to assess user evaluation of competing model outputs. The main objective is uncovering thematic patterns in these conversations and examining their relation to user preferences, particularly if certain LLMs are consistently preferred within specific topics. A robust preprocessing pipeline was designed for multilingual variation, balancing dialogue turns, and cleaning noisy or redacted data. BERTopic extracted over 29 coherent topics including artificial intelligence, programming, ethics, and cloud infrastructure. We analysed relationships between topics and model preferences to identify trends in model-topic alignment. Visualization techniques included inter-topic distance maps, topic probability distributions, and model-versus-topic matrices. Our findings inform domain-specific fine-tuning and optimization strategies for improving real-world LLM performance and user satisfaction.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.