Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 169 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Can Speech LLMs Think while Listening? (2510.07497v1)

Published 8 Oct 2025 in cs.CL, cs.AI, and eess.AS

Abstract: Recent advances in speech LLMs (speech LLMs) have enabled seamless spoken interactions, but these systems still struggle with complex reasoning tasks. Previously, chain-of-thought (CoT) prompting or fine-tuning has been to shown to significantly improve the reasoning abilities of text-based LLMs. In this work, we investigate the effect of CoT fine-tuning for multi-stream speech LLMs, demonstrating that reasoning in text space improves the accuracy of speech LLMs by 2.4x, on average, over a suite of spoken reasoning tasks. Beyond accuracy, the latency of the spoken response is a crucial factor for interacting with voice-based agents. Inspired by the human behavior of "thinking while listening," we propose methods to reduce the additional latency from reasoning by allowing the model to start reasoning before the user query has ended. To achieve this, we introduce an entropy-based metric, "question completeness," which acts as an indicator to guide the model on the optimal time to start reasoning. This method provides greater control over the accuracy-latency trade-off compared with heuristic-based approaches and, under equivalent latency conditions, yields a 4% accuracy gain on ARC-Easy. Finally, we use Direct Preference Optimization (DPO) on preference data created using rejection sampling to push the accuracy-latency pareto frontier further, resulting in a 70% reduction in latency without loss in accuracy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.