Can Lessons From Human Teams Be Applied to Multi-Agent Systems? The Role of Structure, Diversity, and Interaction Dynamics (2510.07488v1)
Abstract: Multi-Agent Systems (MAS) with LLM-powered agents are gaining attention, yet fewer studies explore their team dynamics. Inspired by human team science, we propose a multi-agent framework to examine core aspects of team science: structure, diversity, and interaction dynamics. We evaluate team performance across four tasks: CommonsenseQA, StrategyQA, Social IQa, and Latent Implicit Hate, spanning commonsense and social reasoning. Our results show that flat teams tend to perform better than hierarchical ones, while diversity has a nuanced impact. Interviews suggest agents are overconfident about their team performance, yet post-task reflections reveal both appreciation for collaboration and challenges in integration, including limited conversational coordination.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.