Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Filtering and Analysis of Multiplicities in Eigenvalue Spectra (2510.07439v1)

Published 8 Oct 2025 in quant-ph and cs.DS

Abstract: Fine-grained spectral properties of quantum Hamiltonians, including both eigenvalues and their multiplicities, provide useful information for characterizing many-body quantum systems as well as for understanding phenomena such as topological order. Extracting such information with small additive error is $#\textsf{BQP}$-complete in the worst case. In this work, we introduce QFAMES (Quantum Filtering and Analysis of Multiplicities in Eigenvalue Spectra), a quantum algorithm that efficiently identifies clusters of closely spaced dominant eigenvalues and determines their multiplicities under physically motivated assumptions, which allows us to bypass worst-case complexity barriers. QFAMES also enables the estimation of observable expectation values within targeted energy clusters, providing a powerful tool for studying quantum phase transitions and other physical properties. We validate the effectiveness of QFAMES through numerical demonstrations, including its applications to characterizing quantum phases in the transverse-field Ising model and estimating the ground-state degeneracy of a topologically ordered phase in the two-dimensional toric code model. Our approach offers rigorous theoretical guarantees and significant advantages over existing subspace-based quantum spectral analysis methods, particularly in terms of the sample complexity and the ability to resolve degeneracies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 5 tweets with 2 likes about this paper.