Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 183 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Local MAP Sampling for Diffusion Models (2510.07343v1)

Published 7 Oct 2025 in cs.GR, cs.AI, and eess.IV

Abstract: Diffusion Posterior Sampling (DPS) provides a principled Bayesian approach to inverse problems by sampling from $p(x_0 \mid y)$. However, in practice, the goal of inverse problem solving is not to cover the posterior but to recover the most accurate reconstruction, where optimization-based diffusion solvers often excel despite lacking a clear probabilistic foundation. We introduce Local MAP Sampling (LMAPS), a new inference framework that iteratively solving local MAP subproblems along the diffusion trajectory. This perspective clarifies their connection to global MAP estimation and DPS, offering a unified probabilistic interpretation for optimization-based methods. Building on this foundation, we develop practical algorithms with a probabilistically interpretable covariance approximation, a reformulated objective for stability and interpretability, and a gradient approximation for non-differentiable operators. Across a broad set of image restoration and scientific tasks, LMAPS achieves state-of-the-art performance, including $\geq 2$ dB gains on motion deblurring, JPEG restoration, and quantization, and $>1.5$ dB improvements on inverse scattering benchmarks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv