Addressing the ID-Matching Challenge in Long Video Captioning (2510.06973v1)
Abstract: Generating captions for long and complex videos is both critical and challenging, with significant implications for the growing fields of text-to-video generation and multi-modal understanding. One key challenge in long video captioning is accurately recognizing the same individuals who appear in different frames, which we refer to as the ID-Matching problem. Few prior works have focused on this important issue. Those that have, usually suffer from limited generalization and depend on point-wise matching, which limits their overall effectiveness. In this paper, unlike previous approaches, we build upon LVLMs to leverage their powerful priors. We aim to unlock the inherent ID-Matching capabilities within LVLMs themselves to enhance the ID-Matching performance of captions. Specifically, we first introduce a new benchmark for assessing the ID-Matching capabilities of video captions. Using this benchmark, we investigate LVLMs containing GPT-4o, revealing key insights that the performance of ID-Matching can be improved through two methods: 1) enhancing the usage of image information and 2) increasing the quantity of information of individual descriptions. Based on these insights, we propose a novel video captioning method called Recognizing Identities for Captioning Effectively (RICE). Extensive experiments including assessments of caption quality and ID-Matching performance, demonstrate the superiority of our approach. Notably, when implemented on GPT-4o, our RICE improves the precision of ID-Matching from 50% to 90% and improves the recall of ID-Matching from 15% to 80% compared to baseline. RICE makes it possible to continuously track different individuals in the captions of long videos.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.