Papers
Topics
Authors
Recent
2000 character limit reached

TGPR: Tree-Guided Policy Refinement for Robust Self-Debugging of LLMs (2510.06878v1)

Published 8 Oct 2025 in cs.AI

Abstract: Iterative refinement has been a promising paradigm to enable LLMs to resolve difficult reasoning and problem-solving tasks. One of the key challenges, however, is how to effectively search through the enormous search space of possible refinements. Existing methods typically fall back on predefined heuristics, which are troubled by the exploration-exploitation dilemma and cannot adapt based on past refinement outcomes. We introduce Tree-Guided Policy Refinement (TGPR), a novel framework that combines GRPO with a Thompson-Sampling-based tree search. TGPR explores both failed and successful refinement paths actively, with denser training trajectories and more adaptive policies. On HumanEval, MBPP, and APPS benchmarks, our method achieves up to +4.2 percentage points absolute improvement in pass@1 (on MBPP) and up to +12.51 percentage points absolute improvement in pass@10 (on APPS) compared to a competitive GRPO baseline. Apart from debugging code, TGPR focuses on a principled approach to combining learned policies with structured search methods, offering a general framework for enhancing iterative refinement and stateful reasoning in LLMs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.