Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

GSM: GPU Accelerated Rare Events Sampling with Machine Learning Potentials (2510.06873v1)

Published 8 Oct 2025 in physics.comp-ph

Abstract: Enhanced sampling has achieved considerable success in molecular dynamics (MD) simulations of rare events. Metadynamics (MetaD), owing to its excellent compatibility with MD engines, became one of the most popular enhanced sampling methods. With the boom of GPU computing and the advent of machine learning potentials (MLPs), high-accuracy, large-scale MD simulations have gradually become feasible. However, the corresponding GPU-based enhanced sampling tools have not yet been well adapted to this progress. To enable full-life-cycle GPU MetaD simulations, we propose the GPU Sampling MetaD (GSM) package. By leveraging MLPs, it is feasible to perform high-precision rare event sampling for systems comprising millions of atoms on a typical single GPU, which offers a potential solution to many size-dependent problems. By conducting sampling in several classical systems, the results sufficiently demonstrate the capability of this package to simulate diverse atomic systems, especially efficient in large scale systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 20 likes.

Upgrade to Pro to view all of the tweets about this paper: