Papers
Topics
Authors
Recent
2000 character limit reached

Efficient numeracy in language models through single-token number embeddings (2510.06824v1)

Published 8 Oct 2025 in cs.LG

Abstract: To drive progress in science and engineering, LLMs must be able to process large amounts of numerical data and solve long calculations efficiently. This is currently only possible through the use of external tools or extensive reasoning chains, either limiting the numerical intuition of LLMs or limiting the length of problems they can solve. We show that frontier LLMs require excessive amounts of reasoning tokens to solve even basic calculations, which is exacerbated by their tokenization strategies that split single numbers into multiple tokens. This motivates the need for efficient and effective single-token number encodings. We introduce a set of desiderata for such encodings and show that existing approaches fail to fulfill them. To address these shortcomings, we propose BitTokens, a novel tokenization strategy that embeds any number into a single token using its IEEE 754 binary floating-point representation. Through extensive experiments we show that our BitTokens allow even small LLMs to learn algorithms that solve basic arithmetic operations nearly perfectly. This newly gained efficiency could expand the length and complexity of problems LLMs can solve.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.