Papers
Topics
Authors
Recent
2000 character limit reached

BlackboxNLP-2025 MIB Shared Task: Exploring Ensemble Strategies for Circuit Localization Methods (2510.06811v1)

Published 8 Oct 2025 in cs.CL and cs.LG

Abstract: The Circuit Localization track of the Mechanistic Interpretability Benchmark (MIB) evaluates methods for localizing circuits within LLMs, i.e., subnetworks responsible for specific task behaviors. In this work, we investigate whether ensembling two or more circuit localization methods can improve performance. We explore two variants: parallel and sequential ensembling. In parallel ensembling, we combine attribution scores assigned to each edge by different methods-e.g., by averaging or taking the minimum or maximum value. In the sequential ensemble, we use edge attribution scores obtained via EAP-IG as a warm start for a more expensive but more precise circuit identification method, namely edge pruning. We observe that both approaches yield notable gains on the benchmark metrics, leading to a more precise circuit identification approach. Finally, we find that taking a parallel ensemble over various methods, including the sequential ensemble, achieves the best results. We evaluate our approach in the BlackboxNLP 2025 MIB Shared Task, comparing ensemble scores to official baselines across multiple model-task combinations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.